KROHNE

KEP Infilink-HMI Success!

Background

KROHNE is a worldwide manufacturer of Flow, Level, Analytical sensors, as well as systems. Our products can be found in just about any industry in any country. The company is 96 years old and its worldwide headquarters is in Duisburg Germany. The NAFTA headquarters is located in Peabody Massachusetts and will soon move to a state of the art manufacturing facility in Beverly, Massachusetts. We have 3 Flow Calibration rigs in our facility. Two are used for volumetric flow calibrations and one is for mass flow calibrations. They are used to calibrate new meters coming off the production line or for customer meter recertification. All rigs use KEP INFILINK as the HMI and KEPSeverEX to control all automation and measurements via the PLC. INFILINK also collects and transfers all essential data via Dynamic Data Exchange to a protected Microsoft EXCEL worksheet to do the higher end calculations, to create a Calibration Certificate, and to store the results as needed.

We chose KEP INFILINK because of its reliability, scalability, seamless integration, and its ease of use. In my experience, I have worked with WINCC, Wonderware, and SynEnergy on various projects as a System engineer providing Pipeline Leak Detection Systems to KROHNE customers but your software's graphic library reduces the project timeline as it has a great section for rapid development. We also can create our own graphics for operator familiarity. For instance, we use the 3D pipes feature because these calibration rigs are compact and complex. The graphic helps the operator know the lines and devices he is using and their state.

Since HMI applications can be used for entire plant wide integration, we found the simplicity and price structure of INFILINK was optimally suited to our needs with 256 tags. The available drivers make it possible to communicate to ANY device that has digital communication and a description.

The majority of the data we receive is via the Modbus Suite but we also use some of the more open drivers like UCON when connecting to our Mettler Toledo scales to receive the data we wanted that was otherwise not available over Modbus. We poll the weight and the scales state, and tare the scale remotely. We also had used the driver ClientAce driver to create an interface using Microsoft Visual Studio from INFILINK to KROHNE propriety software. Here we can connect INFILINK to any software or create files. The newest version of INFILINK includes Database conductivity.

Volume Calibration

Loop01,Loop2,Loop3

Method: Using water as our calibration medium we can calibrate volumetric flow meters from 1/10" to 4". We use a running method against a Prover tank using pulse data. The fluid is brought up to a specific flow rate between 2.5 to 10 ft./ sec using a control valve. Once the velocity is obtaining we cycle the valves from a recirculating mode to direct the fluid into the Prover tank. The pulse count does not begin until the first switch or low switch in the tank is wetted which allows the system time to regain steady state from valve change over. At this point the count will be accumulated until the 2nd switch or high switch is wetted. The volume between these switches is precisely calibrated by the State of Massachusetts Weight and Measures group.

While the meter in test is being calibrated we also are measuring the volume accumulated by the inline master. By doing so we are verifying system integrity of the test system.

Test Meter VS Tank X										
16	565	57	Master Count		0	Master GPM				
166497			Meter Count		0.00		Master Q% of 0.000 GPM			
Calibration Loop	»: 1 3	" Certi	ficate		65.2	23	Temp Deg F			
Reset Data]									
1 Point Run 1 166250 CNT 183.189 GPM 64.214 Deg F	Run 2 166207 CNT 183.400 GPM 64.185 Deg F	Run 3 0 CNT 0.000 GPM 0.000 Deg F	Run 4 0 CNT 0.000 GPM 0.000 Deg F	Run 5 0 CNT 0.000 GPM 0.000 Deg F		Test Meter Si 2.5mm/ 1/10in	ze			
2 Point Run 1 166340 CNT 152.164 GPM	Run 2 166214 CNT 161.607 GPM	Run 3 166250 CNT 152.731 GPM	Run 4 0 CNT 0.000 GPM	Run 5 0 CNT 0.000 GPM		6mm/ 1/4inc 6mm/ 1/4inc 10mm/ 3/8nc 15mm/ 1/2inc 20mm/ 3/4inc	ch ch			
Save 3 Point	Save	Save	Save	Save		25mm/ 1inc 32mm/ 1 1/4in 40mm/ 1 1/2in	h 1ch			
Run 1 166614 CNT 98.568 GPM 64.702 Deg F	Run 2 166614 CNT 95.412 GPM 64.680 Deg F	Run 3 0 CNT 0.000 GPM 0.000 Deg F	Run 4 0 CNT 0.000 GPM 0.000 Deg F	Run 5 0 CNT 0.000 GPM 0.000 Deg F		50mm/ 2inc 65mm/ 2 1/2in 75mm/ 3inc	h hch h			
4 Point Run 1	Run 2	Run 3	Run 4	Run 5		Toomm/ 4inc				
0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save]					
5 Point Run 1	Run 2	Run 3	Run 4	Run 5						
0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save	0.000 GPM 0.000 Deg F Save						
GKL 1 Point Run 1 166497 CNT 156.495 GPM 64.812 Deg F Save	Run 2 0 CNT 0.000 GPM 0.000 Deg F Save	Run 3 0 CNT 0.000 GPM 0.000 Deg F Save	Run 4 0 CNT 0.000 GPM 0.000 Deg F Save	Run 5 0 CNT 0.000 GPM 0.000 Deg F Save						

Loop4

Method: Using water as a calibration medium we can calibrate volumetric flow meters from 6" to 16". We use a close loop system with an elbow booster pump. This is a running calibration method where the fluid is brought up to a specified flow rate between 2.5 to 10 ft/sec using a control valve and VFD. We capture the pulse output for 2 minutes and compare to the masters pulse count. The master meters are made by KROHNE and have been calibrated to ISO 17025 using one of the world's most accurate flow rigs in Europe.

🔲 Loop 4 Master Met	er Volume Rig									
RUN 1 PASSES					RUN 4 PASSES					
0.00 GPM 0.0000 DCM 0.0000 DCT	Pass 1	Pass 2	Pass 3	Ave	0.00 GPM 0.0000 DCM 0.0000 DCT	Pass 1	Pass 2	Pass 3	Ave	
Master Meter	0	0	0	0	Master Meter	0	0	0	0	
Test	0	0	0	0	Test	0	0	0	0	
			Dev (%)	0.0000				Dev (%)	0.0000	
RUN 2 PASSES					RUN 5 PASSES	RUN 5 PASSES				
0.00 GPM 0.0000 DCM 0.0000 DCT	Pass 1	Pass 2	Pass 3	Ave	0.00 GPM 0.0000 DCM 0.0000 DCT	Pass 1	Pass 2	Pass 3	Ave	
Master Meter	0	0	0	0	Master Meter	0	0	0	0	
Test	0	0	0	0	Test	0	0	0	0	
			Dev (%)	0.0000				Dev (%)	0.0000	
0.00 GPM 0.0000 DCM 0.0000 DCT	Pass 1	Pass 2	Pass 3	Ave						
Master Meter	0	0	0	0	Master Meter	PIS 0	0.00	Calibra	ate F Re	ady
Test	0	0	0	0	Test Meter	0]			ovina
Master Configu	ration		Dev (%)	0.0000	Temperature	70.70	- 			
5102	1					12.16	Deg F			one
6"-12"	FI-01 16"				Run Time	0	Sec		Er	ror
		Software version 1.000.A			Duration of Prove	90	Sec			
		Reset Data					-	Repor	t Help	

Cr. Ser

